Practice B LESSON

Tell whether each transformation appears to be a dilation.

Draw the dilation of each figure under the given scale factor with center of dilation P.

5. scale factor: $\frac{1}{2}$

P•

- 6. scale factor: -2
- 7. A sign painter creates a rectangular sign for Mom's Diner on his computer desktop. The desktop version is 12 inches by 4 inches. The actual sign will be 15 feet by 5 feet. If the capital *M* in "Mom's" will be 4 feet tall,

find the height of the *M* on his desktop version.

Draw the image of the figure with the given vertices under a dilation with the given scale factor centered at the origin.

8. A(2, -2), B(2, 3), C(-3, 3), D(-3, -2);scale factor: $\frac{1}{2}$

10. J(0, 2), K(-2, 1), L(0, -2), M(2, -1);scale factor: 2

	Í	y			
	3.				
	Ŭ				
					x
-3	0		3	3	
-3	0		3	3	
-3	0			3	
-3			3	3	

9. P(-4, 4), Q(-3, 1), R(2, 3);scale factor: -1

11. *D*(0, 0), *E*(-1, 0), *F*(-1, -1); scale factor: -2

52

LESSON Practice A	LESSON Practice B
12-7 Dilations	12-7 Dilations
Fill in the blanks to complete the definition.	Tell whether each transformation appears to be a dilation.
1. A dilation, or <u>similarity</u> transformation, is a transformation in which	1. 🗌 no 2. 🦳 yes
the lines connecting every point <i>P</i> with its image <i>P'</i> all intersect at a point <i>C</i> , called the center of dilation <u>CP'</u> is the Same for every point <i>P</i>	
<u>center of dilation</u> . $\frac{CP'}{CP}$ is the <u>Same</u> for every point <i>P</i> .	
Tell whether each transformation appears to be a dilation.	
2 no 3 no	
	Draw the dilation of each figure under the given scale factor with center of dilation <i>P</i> .
	5. scale factor: $\frac{1}{2}$ 6. scale factor: -2
4. yes 5. yes	
	P•
Draw the dilation of each figure under the given scale factor with center of	7. A sign painter creates a rectangular sign for Mom's Diner on his computer
dilation <i>P</i> . To do this, draw a dashed line from each vertex to point <i>P</i> . Use a ruler to measure the distance from each vertex to point <i>P</i> and then plot the new vertex	desktop. The desktop version is 12 inches by 4 inches. The actual sign will be 15 feat by 5 feat
that same distance multiplied by the scale factor along the dashed line.	be 15 feet by 5 feet. If the capital <i>M</i> in "Mom's" will be 4 feet tall, <u>31</u> inches
6. scale factor: 2 7. scale factor: $\frac{1}{2}$	Draw the image of the figure with the given vertices under a dilation with the
	given scale factor centered at the origin. 8. $A(2, -2)$, $B(2, 3)$, $C(-3, 3)$, $D(-3, -2)$; 9. $P(-4, 4)$, $Q(-3, 1)$, $R(2, 3)$;
	scale factor: $\frac{1}{2}$ scale factor: -1
8. An engraver is designing a stamp to celebrate Asian American history. Her original	
version of the stamp is a rectangle 6 inches by 9 inches. When the stamp is produced, $\frac{1}{6}$	
it will be a rectangle 1 inch by $1\frac{1}{2}$ inches. Find the scale factor of the reduction. <u>6</u>	
Draw the image of the figure with the given vertices under a dilation with the	
given scale factor centered at the origin.	
 D(0, 2), E(0, 0), F(2, 1), G(3, 3); A(1, 3), B(3, 2), C(1, -2); scale factor: -1 	10. J(0, 2), K(-2, 1), L(0, -2), M(2, -1); 11. D(0, 0), E(-1, 0), F(-1, -1);
	scale factor: 2 scale factor: -2
G C ^{/3} A B	3 F
Copyright © by Holt, Rinehart and Winston. 51 Holt Geometry All rights reserved.	Copyright @ by Holt, Rinehart and Winston. 52 Holt Geometry All rights reserved.
12-7 Dilations	127 Dilations
	IP27A Dilations A dilation is a transformation that changes the size of a figure but not the shape.
 1. Jacob constructed this dilation of a triangle with center of dilation <i>P</i> and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. 	127 Dilations
1227 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation <i>P</i> and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA', PB = BB', PC = CC'$	IP27A Dilations A dilation is a transformation that changes the size of a figure but not the shape.
12.7 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'Therefore, PA' = 2PB, BB' = 2PB, and PC' = 2PC.$	IP27A Dilations A dilation is a transformation that changes the size of a figure but not the shape.
12.7 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'Therefore, PA' = 2PB, BB' = 2PB, and PC' = 2PC.$	IP27A Dilations A dilation is a transformation that changes the size of a figure but not the shape.
12.7 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'Therefore, PA' = 2PB, BB' = 2PB, and PC' = 2PC.$	IP27A Dilations A dilation is a transformation that changes the size of a figure but not the shape.
12.7 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'Therefore, PA' = 2PB, BB' = 2PB, and PC' = 2PC.$	A dilation is a transformation that changes the size of a figure but not the shape. Dilation Not a Dilation
1227 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA', PB = BB', PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'; k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\triangle APB$ is the same angle as $\triangle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PQ} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$.	IP27A Dilations A dilation is a transformation that changes the size of a figure but not the shape.
1227 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA', PB = BB', PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'; k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\triangle APB$ is the same angle as $\triangle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PQ} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$.	A dilation is a transformation in which the lines connecting every point A
1227 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA', PB = BB', PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'; k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\triangle APB$ is the same angle as $\triangle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PQ} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$.	A dilation is a transformation in which the lines connecting every point A
11272 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA', PB = BB', PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'; k = 2$ Possible answer: It is given that $PA = AA'$, $PB = BB'$, and $PC = CC'$. Therefore, $PA' = 2PA, PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PB} = 2$ and $\frac{PB'}{PB} = 2$. $\angle APB$ is the same angle as $\angle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC \sim \triangle PA'C'$. Thus $\frac{A'C'}{AC} = 2$. Because $\frac{A'B'}{AB} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim $	A dilation is a transformation in which the lines connecting every point A
1227 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA', PB = BB', PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'; k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\triangle APB$ is the same angle as $\triangle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC$ $\sim \triangle PA'C'$. Thus $\frac{A'C'}{AC} = 2$. Because $\frac{A'B'}{AB} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim$ $\triangle A'B'C'$ by SSS similarity, and the scale factor k is 2.	A dilation is a transformation in which the lines connecting every point A
1227 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA', PB = BB', PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'; k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\triangle APB$ is the same angle as $\triangle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC$ $\sim \triangle PA'C'$. Thus $\frac{A'C'}{AC} = 2$. Because $\frac{AB'}{AB} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim$	A dilation is a transformation in which the lines connecting every point A
1227 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA', PB = BB', PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'; k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PC} = 2$. $\triangle APB$ is the same angle as $\triangle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC$ $\sim \triangle PA'C'$. Thus $\frac{A'C'}{AC} = 2$. Because $\frac{A'B'}{AB} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim \Delta'A'B'C'$ by SSS similarity, and the scale factor k is 2. 2. Describe two successive dilations of square ABCD that will create the figure shown.Possible answer: first, a dilation of ABCD with scale factor 2 and center of dilation A, and then a dilation	A dilation is a transformation that changes the size of a figure but not the shape. Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation.
1227 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation <i>P</i> and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ Possible answer: It is given that $PA = AA'$, $PB = BB'$, and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PC} = 2$. $\triangle APB$ is the same angle as $\triangle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$. and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC \sim \triangle PA'C'$. Thus $\frac{A'C'}{AC} = 2$. Because $\frac{A'B'}{AB} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim \triangle A'B'C'$ by SSS similarity, and the scale factor k is 2. 2. Describe two successive dilations of square ABCD that will create the figure shown.Possible answer: first, a dilation of ABCD with scale factor -1 and center of dilation C	A dilation is a transformation that changes the size of a figure but not the shape. Not a Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. Tell whether each transformation appears to be a dilation.
11272 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\angle APB$ is the same angle as $\angle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC$ $\sim \triangle PA'C'$. Thus $\frac{A'C'}{AC} = 2$. Because $\frac{A'B'}{BB} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim \triangle A'B'C'$ by SSS similarity, and the scale factor k is 2. 2. Describe two successive dilations of square $ABCD$ that will create the figure shown. Possible answer: first, a dilation of $ABCD$ with scale factor 2 and center of dilation A, and then a dilation of $ABCD$ with scale factor -1 and center of dilation C. Find the vertices of the image of each triangle with the given vertices,	A dilation is a transformation that changes the size of a figure but not the shape. Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation.
1427 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA', PB = BB', PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'; k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA, PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\triangle APB$ is the same angle as $\triangle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{RB} = 2$. Because $\frac{PA'}{PA} = 2, \frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC$ $\sim \triangle PA'C'$. Thus $\frac{A'C}{AC} = 2$. Because $\frac{AB'}{BA} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim$ $\triangle A'B'C'$ by SSS similarity, and the scale factor k is 2. 2. Describe two successive dilations of square ABCD that will create the figure shown. Possible answer: first, a dilation of ABCD with scale factor 2 and center of dilation A, and then a dilation of ABCD with scale factor -1 and center of dilation C. Find the vertices of the image of each triangle with the given vertices, scale factor, and center of dilation P.	A dilation is a transformation that changes the size of a figure but not the shape. Not a Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. Tell whether each transformation appears to be a dilation.
1227 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation <i>P</i> and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ POSSIble answer: It is given that $PA = AA'$, $PB = BB'$, and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PC} = 2$. $\angle APB$ is the same angle as $\angle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC \sim \triangle PA'C'$. Thus $\frac{A'C'}{AC} = 2$. Because $\frac{A'B'}{BB} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim \triangle A'B'C'$ by SSS similarity, and the scale factor <i>k</i> is 2. 2. Describe two successive dilations of square ABCD that will create the figure shown. Possible answer: first, a dilation of ABCD with scale factor -1 and center of dilation <i>C</i> . Find the vertices of the image of each triangle with the given vertices, scale factor <i>x</i> and center of dilation <i>P</i> . 3. $X(3, 0, 1Y(3, 0), Z(6, 5); k = \frac{1}{2}$. $(-2, 0); C(-2, 0); C(1, 2); k = -2$.	A dilation is a transformation that changes the size of a figure but not the shape. Not a Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. Tell whether each transformation appears to be a dilation.
1427 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA', PB = BB', PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'; k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA, PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\triangle APB$ is the same angle as $\triangle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{RB} = 2$. Because $\frac{PA'}{PA} = 2, \frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC$ $\sim \triangle PA'C'$. Thus $\frac{A'C}{AC} = 2$. Because $\frac{AB'}{BA} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim$ $\triangle A'B'C'$ by SSS similarity, and the scale factor k is 2. 2. Describe two successive dilations of square ABCD that will create the figure shown. Possible answer: first, a dilation of ABCD with scale factor 2 and center of dilation A, and then a dilation of ABCD with scale factor -1 and center of dilation C. Find the vertices of the image of each triangle with the given vertices, scale factor, and center of dilation P.	Dilations A dilation is a transformation that changes the size of a figure but not the shape. Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation.
1227 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation <i>P</i> and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ POSSIble answer: It is given that $PA = AA'$, $PB = BB'$, and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PC} = 2$. $\angle APB$ is the same angle as $\angle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC \sim \triangle PA'C'$. Thus $\frac{A'C'}{AC} = 2$. Because $\frac{A'B'}{BB} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim \triangle A'B'C'$ by SSS similarity, and the scale factor <i>k</i> is 2. 2. Describe two successive dilations of square ABCD that will create the figure shown. Possible answer: first, a dilation of ABCD with scale factor -1 and center of dilation <i>C</i> . Find the vertices of the image of each triangle with the given vertices, scale factor <i>x</i> and center of dilation <i>P</i> . 3. $X(3, 0, 1Y(3, 0), Z(6, 5); k = \frac{1}{2}$. $(-2, 0); C(-2, 0); C(1, 2); k = -2$.	A dilation is a transformation that changes the size of a figure but not the shape. Not a Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. Tell whether each transformation appears to be a dilation.
1227 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and 1. Jacob constructed this dilation of a triangle with center of dilation P and 1. Jacob constructed this dilation of a triangle with center of dilation P and produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\angle APB$ is the same angle as $\angle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'PB'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{G'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC$ $\sim \triangle PA'C'$. Thus $\frac{A'C}{AC} = 2$. Because $\frac{A'B}{AB} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim \triangle A'B'C'$ by SSS similarity, and the scale factor k is 2. 2. Describe two successive dilations of square $ABCD$ that will create the figure shown. Possible answer: first, a dilation of $ABCD$ with scale factor 2 and center of dilation A , and then a dilation of $ABCD$ with scale factor -1 and center of dilation C 3. $x(3, 6), V(3, 0), Z(6, 5); k = \frac{1}{2}$ $\frac{FC}{PC} : y = x - 4$ $\frac{FC}{PC} : y = -x + 3$ $\frac{FC}{PC} : y = x - 4$ $\frac{FC}{PC} : y = x - 2$ $\frac{Y'(2, 4), Y'(2, 1), Z'(3.5, 3.5)}{Y'(2, -1, -5), F'(7, -9), G'(1, -13)}$	Dilations A dilation is a transformation that changes the size of a figure but not the shape. Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation.
11277 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ Possible answer: It is given that $PA = AA'$, $PB = BB'$, and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\angle APB$ is the same angle as $\angle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'PB'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B}{C} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC \sim \triangle PA'C'$. Thus $\frac{A'C'}{AC} = 2$. Because $\frac{PA'}{AB} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim \triangle A'B'C'$ by SSS similarity, and the scale factor k is 2. 2. Describe two successive dilations of square ABCD that will create the figure shown. Possible answer: first, a dilation of ABCD with scale factor 2 and center of dilation A, and then a dilation of $ABCD$ with scale factor -1 and center of dilation C Find the vertices of the image of each triangle with the given vertices, scale factor, and center of dilation P. 3. $X(3, 6), Y(3, 0), Z(6, 5); k = \frac{1}{2}$ $\frac{X'(2, 4), Y'(2, 1), Z'(3.5, 3.5)}{X'(2, 4), Y'(2, 1), Z'(3.5, 3.5)}$ E'(-1, -5), F'(7, -9), G'(1, -13). $\triangle ABC$ has vertices $A(2, 0), B(1, 1)$, and $C(2, 2), \triangle A'B'C'$ has vertices $A'(-2, 0)$,	Dilations A dilation is a transformation that changes the size of a figure but not the shape. Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. Image: A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. Image: A' all intersect at point P, called the center of dilation. Image: A' all intersect at point P, called the center of dilation. Image: A' all intersect at point P, called the center of dilation. Image: A' all intersect at point P, called the center of dilation. Image: A' all intersect at point P, called the center of dilation. Image: A' all intersect the center of dilation. <t< td=""></t<>
1227 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\angle APB$ is the same angle as $\angle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'PB'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC$ $\sim \triangle PA'C'$. Thus $\frac{A'C}{AC} = 2$. Because $\frac{A'B}{AB} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim \triangle A'B'C'$ by SSS similarity, and the scale factor k is 2. 2. Describe two successive dilations of square ABCD that will create the figure shown. Possible answer: first, a dilation of ABCD with scale factor 2 and center of dilation A, and then a dilation of ABCD with scale factor -1 and center of dilation C 3. $\frac{X(3, 6)}{BC}$, $(X, 0)$, $Z(6, 5)$; $k = \frac{1}{2}$ $\frac{X'(2, 4)}{P'(2, 1), Z'(3.5, 3.5)}$ 4. $\frac{E(2, -2), F(-2, 0), G(1, 2); k = -2}{PC}$ $\frac{X'(2, 4), Y'(2, 1), Z'(3.5, 3.5)}{X'(2, 4), Y'(2, 1), Z'(3.5, 3.5)}$	Dilations A dilation is a transformation that changes the size of a figure but not the shape. Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. Image: A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transforma
11277 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ POSSible answer: It is given that $PA = AA'$, $PB = BB'$, and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\angle APB$ is the same angle as $\angle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{B} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB = \angle CP'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC \sim \triangle PA'C'$. Thus $\frac{A'C'}{AC} = 2$. Because $\frac{A'B'}{B} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim \triangle A'B'C'$ by SSS similarity, and the scale factor k is 2. 2. Describe two successive dilations of square ABCD that will create the figure shown. Possible answer: first, a dilation of ABCD with scale factor 2 and center of dilation A, and then a dilation of ABCD with scale factor -1 and center of dilation C Si A(3, 6), Y(3, 0), Z(6, 5); $k = \frac{1}{2}$ $\frac{A'B'}{PY} = y = x - 4$ $\frac{PY}{PY} : y = -x + 3$ $\frac{PY}{PY} : y = -x + 3$ $\frac{Y'(2, 4), Y'(2, 1), Z'(3.5, 3.5)}{Y'(2, 4), D'(2, 1), Z'(3.5, 3.5)}$ E'(-1, -5), F'(7, -9), G'(1, -13)	Dilations A dilation is a transformation that changes the size of a figure but not the shape. Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. A dilation is a transformation appears to be a dilation. 1
11277 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ POssible answer: It is given that $PA = AA'$, $PB = BB'$, and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\angle APB$ is the same angle as $\angle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{B} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB = \angle CP'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC \sim \triangle A'B'C'$. Thus $\frac{A'C'}{AC} = 2$. Because $\frac{A'B'}{BB} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim \triangle A'B'C'$ by SSS similarity, and the scale factor k is 2. 2. Describe two successive dilations of square $ABCD$ that will create the figure shown. Possible answer: first, a dilation of $ABCD$ with scale factor 2 and center of dilation A, and then a dilation of $ABCD$ with scale factor -1 and center of dilation C 5. $X(3, 6), Y(3, 0), Z(6, 5); k = \frac{1}{2}$ 4. $E(2, -2), F(-2, 0), G(1, 2); k = -2$ $\frac{PX}{PY}; y = -x + 3$ $\frac{PF}{PY}; y = -x - 2$ $\frac{X'(2, 4), Y'(2, 1), Z'(3.5, 3.5)}{X'(2, 4), E'(2, 1), Z'(3.5, 3.5)}$ 5. $E'(-1, -5), F'(7, -9), G'(1, -13)$. $\triangle ABC$ has vertices $A(2, 0), B(1, 1)$, and $C(2, 2)$. $\triangle A'B'C'$ has vertices $A'(-2, 0), B'(-4, 2),$ and $C'(-2, 4)$. Use this preimage and image for Exercises 5 and 6. (<i>Hint:</i> Plotting the triangles on a grid may help.)	Dilations A dilation is a transformation that changes the size of a figure but not the shape. Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. Image: A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transformation appears to be a dilation. Image: A dilation is a transforma
11271 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\triangle APB$ is the same angle as $\triangle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{G'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC$ $\sim \triangle PA'C'$. Thus $\frac{A'C}{AC} = 2$. Because $\frac{A'B}{B} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim \triangle A'B'C'$ by SSS similarity, and the scale factor k is 2. 2. Describe two successive dilations of square ABCD that will create the figure shown. Possible answer: first, a dilation of ABCD with scale factor 2 and center of dilation A, and then a dilation of ABCD with scale factor -1 and center of dilation C Find the vertices of the image of each triangle with the given vertices, scale factor, and center of dilation P. 3. $X(3, 6), Y(3, 0), Z(6, 5); k = \frac{1}{2}$ $\frac{Y'(2, 4), Y'(2, 1), Z'(3.5, 3.5)}{Y'(2, 4), Y'(2, 1), Z'(3.5, 3.5)}$ E'(-1, -5), F'(7, -9), G'(1, -13). ΔABC has vertices $A(2, 0), B(1, 1),$ and $C(2, 2), \Delta A'B'C'$ has vertices $A'(-2, 0),$ B'(-4, 2), and $C'(-2, 4)$. Use this preimage and image to Exercises 5 and 6. (<i>Hint:</i> Photing the triangles on a gird my help.) 5. Describe two successive dilation that will cause the preimage to coincide with its image. a dilation with scale factor 2 and center of dilation $P(6, 0)$ 6. Describe two successive dilations that will cause the preimage to coincide with	Dilations A dilation is a transformation that changes the size of a figure but not the shape. Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. A dilation is a transformation appears to be a dilation. 1
1277 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\triangle APB$ is the same angle as $\triangle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC$ $\sim \triangle PA'C'$. Thus $\frac{A'C}{AC} = 2$. Because $\frac{A'B}{AB} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim \triangle A'B'C'$ by SSS similarity, and the scale factor k is 2. 2. Describe two successive dilations of square ABCD that will create the figure shown. Possible answer: first, a dilation of $ABCD$ with scale factor 2 and center of dilation A, and then a dilation of $ABCD$ with scale factor -1 and center of dilation C $\frac{FR': y = 2x}{PY': y = -x + 3}$ F'(-1, -5), F'(7, -9), G'(1, -13). AABC has vertices $A(2, 0), B(1, 1), and C(2, 2), \triangle A'B'C'$ has vertices $A'(-2, 0), B'(-4, 2), and C'(-2, 4)$. Use this preimage and image for Exercises 5 and 6. (<i>Hint:</i> Plotting the triangles on a grid may help.) 5. Describe two successive dilations that will cause the preimage to coincide with its image.	Dilations A dilation is a transformation that changes the size of a figure but not the shape. Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. A dilation is a transformation appears to be a dilation. 1
1227 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\triangle APB$ is the same angle as $\triangle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{G'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC$ $\sim \triangle PA'C'$. Thus $\frac{A'C}{AC} = 2$. Because $\frac{A'B}{B} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim$ $\triangle A'B'C'$ by SSS similarity, and the scale factor k is 2. 2. Describe two successive dilations of square $ABCD$ that will create the figure shown. Possible answer: first, a dilation of $ABCD$ with scale factor 2 and center of dilation A, and then a dilation of $ABCD$ with scale factor -1 and center of dilation C $\frac{PC'}{PC'} = x = 4$ $\frac{PC'}{PC'} = y = x + 3$ $\frac{PC'}{PC'} = y = x - 4$ $\frac{PC'}{PC'} = y = x + 3$ $\frac{PC'}{PC'} = y = x - 4$ $\frac{PC'}{PC'} = y = x + 3$ $\frac{PC'}{PC'} = y = x - 4$ $\frac{PC'}{PC'} = y = x - 2$ $\frac{K'(2, 4), Y'(2, 1), Z'(3.5, 3.5)}{\frac{E'(-1, -5), F'(7, -9), G'(1, -13)}{\frac{E'(-1, -5), F'(7, -9), G'(1, -13)}{\frac{E'(-1, -5), F'(7, -9), G'(1, -13)}{\frac{E'(-1, -2), BC'}{\frac{E'(-2), BC'}{\frac$	Dilations A dilation is a transformation that changes the size of a figure but not the shape. Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. A dilation is a transformation appears to be a dilation. 1
1277 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\triangle APB$ is the same angle as $\triangle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'PB'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC$ $\sim \triangle PA'C'$. Thus $\frac{A'C}{AC} = 2$. Because $\frac{A'B}{AB} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim \triangle A'B'C'$ by SSS similarity, and the scale factor k is 2. 2. Describe two successive dilations of square ABCD that will create the figure shown. Possible answer: first, a dilation of ABCD with scale factor 2 and center of dilation A, and then a dilation of ABCD with scale factor -1 and center of dilation C $\frac{PR': y = 2x}{PY': y = -x + 3}$ $\frac{P'F: y = -x - 2}{PY': y = -x + 3}$ F'(-1, -5), F'(7, -9), G'(1, -13). AABC has vertices $A(2, 0), B(1, 1),$ and $C(2, 2), \triangle A'B'C'$ has vertices $A'(-2, 0),$ B'(-4, 2), and $C'(-2, 4)$. Use this preimage and image for Exercises 5 and 6. (<i>Hint:</i> Plotting the triangles on a grid may help.) 5. Describe two successive dilations that will cause the preimage to coincide with its image.	Dilations A dilation is a transformation that changes the size of a figure but not the shape. Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. A dilation is a transformation appears to be a dilation. 1 2 yes 10 Copy teach triangle and center of dilation. Draw the image of the triangle under a dilation with the given scale factor. 3. scale factor: 2 4. scale factor: $\frac{1}{2}$
1227 Dilations 1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2. Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large. Given: $PA = AA'$, $PB = BB'$, $PC = CC'$ Prove: $\triangle ABC \sim \triangle A'B'C'$; $k = 2$ Possible answer: It is given that $PA = AA'$, PB = BB', and $PC = CC'$. Therefore, $PA' = 2PA$, $PB' = 2PB$, and $PC' = 2PC$. So $\frac{PA'}{PA} = 2$ and $\frac{PB'}{PB} = 2$. $\triangle APB$ is the same angle as $\triangle A'P'B'$, so they are congruent. By SAS similarity, $\triangle PAB \sim \triangle PA'B'$. Thus $\frac{A'B'}{AB} = 2$. Likewise, $\frac{PB'}{PB} = 2$ and $\frac{PC'}{PC} = 2$. $\angle CPB \cong \angle C'P'B'$. By SAS similarity, $\triangle PCB \sim \triangle PC'B'$. Thus $\frac{C'B'}{CB} = 2$. Because $\frac{PA'}{PA} = 2$, $\frac{PC'}{PC} = 2$, and $\angle APC \cong \angle A'P'C'$, $\triangle PAC$ $\sim \triangle PA'C'$. Thus $\frac{A'C}{AC} = 2$. Because $\frac{A'B}{B} = \frac{C'B'}{CB} = \frac{A'C'}{AC} = 2$, $\triangle ABC \sim$ $\triangle A'B'C'$ by SSS similarity, and the scale factor k is 2. 2. Describe two successive dilations of square ABCD that will create the figure shown. Possible answer: first, a dilation of ABCD with scale factor 2 and center of dilation A, and then a dilation of ABCD with scale factor -1 and center of dilation C $\frac{FC}{PC'} : y = x + 3$ $\frac{FF}{PC'} : y = -x - 2$ $\frac{K'(2, 4), Y'(2, 1), Z'(3.5, 3.5)}{\frac{F'(-1, -5), F'(7, -9), G'(1, -13)}{\frac{F(-1, -5), F(-2, 0)}{\frac{F(-1, -5), F(-2, 0)}{F(-1, -5), F(-2$	Dilations A dilation is a transformation that changes the size of a figure but not the shape. Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. A dilation is a transformation appears to be a dilation. 1 2 yes 10 Copy teach triangle and center of dilation. Draw the image of the triangle under a dilation with the given scale factor. 3. scale factor: 2 4. scale factor: $\frac{1}{2}$
1127 	Dilations A dilation is a transformation that changes the size of a figure but not the shape. Dilation Not a Dilation A dilation is a transformation in which the lines connecting every point A with its image A' all intersect at point P, called the center of dilation. A dilation is a transformation appears to be a dilation. 1 2 yes 10 Copy teach triangle and center of dilation. Draw the image of the triangle under a dilation with the given scale factor. 3. scale factor: 2 4. scale factor: $\frac{1}{2}$