\qquad Date \qquad Class \qquad

Lesson
 Practice B

12.7 Dilations

Tell whether each transformation appears to be a dilation.
1.

2.

3.

\qquad
4.

Draw the dilation of each figure under the given scale factor with center of dilation P.

5. scale factor: $\frac{1}{2}$

6. scale factor: -2

P•
7. A sign painter creates a rectangular sign for Mom's Diner on his computer desktop. The desktop version is 12 inches by 4 inches. The actual sign will be 15 feet by 5 feet. If the capital M in "Mom's" will be 4 feet tall, find the height of the M on his desktop version.
Draw the image of the figure with the given vertices under a dilation with the given scale factor centered at the origin.
8. $A(2,-2), B(2,3), C(-3,3), D(-3,-2)$; scale factor: $\frac{1}{2}$

				3				
	-3		0			3		
				-3				

10. $J(0,2), K(-2,1), L(0,-2), M(2,-1)$; scale factor: 2

11. $P(-4,4), Q(-3,1), R(2,3)$; scale factor: -1

12. $D(0,0), E(-1,0), F(-1,-1)$; scale factor: - 2

12-7 Dilations

Fill in the blanks to complete the definition

1. A dilation, or \qquad similarity \qquad transformation, is a transformation in which the lines connecting every point P with its image P^{\prime} all intersect at a point C, called the center of dilation.$\frac{C P^{\prime}}{C P}$ is the same for every point P.
Tell whether each transformation appears to be a dilation.

Draw the dilation of each figure under the given scale factor with center of dilation P. To do this, draw a dashed line from each vertex to point P. Use a ruler to measure the distance from each vertex to point P and then plot the new vertex that same distance multiplied by the scale factor along the dashed line.

8. An engraver is designing a stamp to celebrate Asian American history. Her original version of the stamp is a rectangle 6 inches by 9 inches. When the stamp is produced, $\frac{1}{6}$ it will be a rectangle 1 inch by $1 \frac{1}{2}$ inches. Find the scale factor of the reduction. \qquad

Draw the image of the figure with the given vertices under a dilation with the
10. $A(1,3), B(3,2), C(1,-2)$; scale factor: -

Copright. © by Holl, Rinehart and Winston.
All
51
Holt Geometry

${ }^{\text {LIEson }}$ Practice \mathbf{C}

12-7 Dilations

1. Jacob constructed this dilation of a triangle with center of dilation P and scale factor 2 . Write a paragraph proof to prove that the construction produces a triangle similar to the original, but twice as large.
Given: $P A=A A^{\prime}, P B=B B^{\prime}, P C=C C^{\prime}$

Prove: $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime} ; k=2$ Possible answer: It is given that $P A=A A^{\prime}$,
$P B=B B^{\prime}$, and $P C=C C^{\prime}$. Therefore, $P A^{\prime}=2 P A, P B^{\prime}=2 P B$, and $P C^{\prime}=2 P C$.
So $\frac{P A^{\prime}}{P A}=2$ and $\frac{P B^{\prime}}{P B}=2 . \angle A P B$ is the same angle as $\angle A^{\prime} P^{\prime} B^{\prime}$, so they are
congruent. By SAS similarity, $\triangle P A B \sim \triangle P A^{\prime} B^{\prime}$. Thus $\frac{A^{\prime} B^{\prime}}{A B}=2$. Likewise, $\frac{P B^{\prime}}{P B}=2$ and $\frac{P C^{\prime}}{P C}=2 . \angle C P B \cong \angle C^{\prime} P^{\prime} B^{\prime}$. By SAS similarity, $\triangle P C B \sim \triangle P C^{\prime} B^{\prime}$. Thus $\frac{C^{\prime} B^{\prime}}{C B}=2$. Because $\frac{P A^{\prime}}{P A}=2, \frac{P C^{\prime}}{P C}=2$, and $\angle A P C \cong \angle A^{\prime} P^{\prime} C^{\prime}, \triangle P A C$ $\sim \triangle P A^{\prime} C^{\prime}$. Thus $\frac{A^{\prime} C^{\prime}}{A C}=2$. Because $\frac{A^{\prime} B^{\prime}}{A B}=\frac{C^{\prime} B^{\prime}}{C B}=\frac{A^{\prime} C^{\prime}}{A C}=2, \triangle A B C \sim$ $\triangle A^{\prime} B^{\prime} C^{\prime}$ by SSS similarity, and the scale factor k is 2.
2. Describe two successive dilations of square $A B C D$ that will create the figure shown.Possible answer: first, a dilation of $A B C D$ with scale factor 2 and center of dilation A, and then a dilation of $A B C D$ with scale factor -1 and center of dilation C

Find the vertices of the image of each triangle with the given vertices, scale factor, and center of dilation P.
3. $X(3,6), Y(3,0), Z(6,5) ; k=\frac{1}{2}$
4. $E(2,-2), F(-2,0), G(1,2) ; k=-2$
$\stackrel{P X}{P}: y=2 x$
$\overparen{P E}: y=x-4$
$\overleftrightarrow{P Y}: y=-x+3$
$X^{\prime}(2,4), Y^{\prime}(2,1), Z^{\prime}(3.5,3.5)$
$\overrightarrow{P F}: y=-x-2$
$E^{\prime}(-1,-5), F^{\prime}(7,-9), G^{\prime}(1,-13)$
$\triangle A B C$ has vertices $A(2,0), B(1,1)$, and $C(2,2) . \triangle A^{\prime} B^{\prime} C^{\prime}$ has vertices $A^{\prime}(-2,0)$, $B^{\prime}(-4,2)$, and $C^{\prime}(-2,4)$. Use this preimage and image for Exercises 5 and 6. (Hint: Plotting the triangles on a grid may help.)
5. Describe a single dilation that will cause the preimage to coincide with its image a dilation with scale factor 2 and center of dilation $P(6,0)$
6. Describe two successive dilations that will cause the preimage to coincide with its image.
Possible answer: a dilation with scale factor -2 and center of dilation $P(0,0)$, and then a dilation with scale factor -1 and center of dilation $P(-3,0)$

53
Holt Geometry

Practice B
 $12-7$ Dilations

Tell whether each transformation appears to be a dilation.

Draw the dilation of each figure under the given scale factor with center of dilation P.
5. scale factor: $\frac{1}{2}$
6. scale factor: -2

\rangle_{p}
P.
7. A sign painter creates a rectangular sign for Mom's Diner on his computer desktop. The desktop version is 12 inches by 4 inches. The actual sign will be 15 feet by 5 feet. If the capital M in "Mom's" will be 4 feet tall, $\quad 3 \frac{1}{5}$ inches
find the height of the M on his desktop version.
Draw the image of the figure with the given vertices under a dilation with the given scale factor centered at the origin.
8. $A(2,-2), B(2,3), C(-3,3), D(-3,-2)$; scale factor: $\frac{1}{2}$

10. $J(0,2), K(-2,1), L(0,-2), M(2,-1)$; scale factor: 2

9. $P(-4,4), Q(-3,1), R(2,3)$; scale factor: -1

11. $D(0,0), E(-1,0), F(-1,-1)$; scale factor: -2

Copyight by Hollt Rinehart and Winston.
52
Holt Geometry

LIEson Reteach
 12.7 Dilations

A dilation is a transformation that changes the size of a figure but not the shape.

A dilation is a transformation in which the lines connecting every point A with its image A^{\prime} all intersect at point P, called the center of dilation

Copy teach triangle and center of dilation. Draw the image of the triangle under a dilation with the given scale factor.
3. scale factor: 2
4. scale factor: $\frac{1}{2}$

P•

Copyrigh. by Hy Holl, Rinehart and Winsto
Alt right resenve.

