1. A pattern for a new fabric is made by rotating the figure 90° counterclockwise about the origin and then translating along the vector \((-1, 2)\). Draw the resulting figure in the pattern.

2. \(\triangle LMN\) is reflected across the line \(y = x\) and then reflected across the \(y\)-axis. What are the coordinates of the final image of \(\triangle LMN\)?

Choose the best answer.

3. \(\triangle EFG\) has vertices \(E(1, 5), F(0, -3),\) and \(G(-1, 2)\). \(\triangle EFG\) is translated along the vector \((7, 1)\), and the image is reflected across the \(x\)-axis. What are the coordinates of the final image of \(G\)?
 - A \((6, -3)\)
 - C \((-6, 3)\)
 - B \((6, 3)\)
 - D \((-6, -3)\)

4. \(\triangle KLM\) with vertices \(K(8, -1), L(-1, -4),\) and \(M(2, 3)\) is rotated 180° about the origin. The image is then translated. The final image of \(K\) has coordinates \((-2, -3)\). What is the translation vector?
 - F \((6, 4)\)
 - H \((-1, -11)\)
 - G \((6, -4)\)
 - J \((-10, -2)\)

5. To create a logo for new sweatshirts, a designer reflects the letter \(T\) across line \(h\). That image is then reflected across line \(j\). Describe a single transformation that moves the figure from its starting position to its final position.

6. Which composition of transformations maps \(\triangle QRS\) into Quadrant III?
 - F Translate along the vector \((-6, 4)\) and then reflect across the \(y\)-axis.
 - G Rotate by 90° about the origin and then reflect across the \(x\)-axis.
 - H Reflect across the \(y\)-axis and then rotate by 180° about the origin.
 - J Translate along the vector \((1, 2)\) and then rotate 90° about the origin.
Compositions of Transformations continued

Any translation or rotation is equivalent to a composition of two reflections.

Composition of Two Reflections

To draw two parallel lines of reflection that produce a translation:
- Draw \(\overrightarrow{PP'} \), a segment connecting a preimage point \(P \) and its corresponding image point \(P' \). Draw the perpendicular bisector of \(PP' \).
- Draw \(\overrightarrow{PP''} \), a segment connecting a preimage point \(P'' \) and its corresponding image point \(P'\)'. Draw the perpendicular bisector of \(PP'' \).

To draw two intersecting lines that produce a rotation with center \(C \):
- Draw \(\overrightarrow{PCP''} \), where \(P \) is a preimage point and \(P'' \) is its corresponding image point. Draw \(\overrightarrow{PC} \), the angle bisector of \(\angle PCP'' \).
- Draw \(\overrightarrow{PC} \), the angle bisector of \(\angle PC \) and \(\angle PC' \).

Problem Solving

Compositions of Transformations

1. A pattern for a new fabric is made by rotating the figure 90° counterclockwise about the origin and then translating along the vector \((-1, 2)\). Draw the resulting figure in the pattern.

2. \(\triangle LMN \) is reflected across the line \(y = x \) and then reflected across the \(y \)-axis. What are the coordinates of the final image of \(\triangle LMN \)?

\[L'(-4, -3), M'(-1, 0), N'(4, 1) \]

Choose the best answer.

3. \(\triangle EFG \) has vertices \(E(1, 5), F(0, -3), \) and \(G(-1, 2) \). \(\triangle EFG \) is translated along the vector \((-6, 3)\), and the image is reflected across the \(x \)-axis. What are the coordinates of the final image of \(\triangle EFG \)?

- A \((6, 3) \)
- B \((6, 3) \)
- C \((-6, 3) \)
- D \((-6, -3) \)

4. \(\triangle KLM \) with vertices \(K(8, -1), L(-1, -4), \) and \(M(2, 3) \) is rotated 180° about the origin. The image is then translated. The final image of \(K \) has coordinates \((-2, -3)\). What is the translation vector?

- A \((6, 4) \)
- B \((-1, -1) \)
- C \((6, 4) \)
- D \((-10, -2) \)

5. To create a logo for new sweatshirts, a designer reflects the letter \(T \) across line \(T \). That image is then reflected across line \(J \). Describe a single transformation that moves the figure from its starting position to its final position.

- A translation
- B rotation of 110°
- C rotation of 220°
- D reflection across vertical line

6. Which composition of transformations maps \(\triangle ORS \) into Quadrant III?

- A rotation by 90° about the origin and then reflect over the \(x \)-axis.
- B translate along the vector \((-6, 4)\) and then reflect across the \(y \)-axis.
- C translate along the vector \((-6, 4)\) and then reflect across the \(y \)-axis.
- D translate along the vector \((1, 2)\) and then rotate 90° about the origin.

7. The final image of \(\triangle ABC \) has coordinates \((-4, 2)\) when rotated 180° about the origin. It is then translated. What are the coordinates of the final image?

- A \((4, -2) \)
- B \((4, 2) \)
- C \((-4, -2) \)
- D \((-4, 2) \)

8. The face with the arrow overlaps the face with the zig zag.

- A \((6, 4) \)
- B \((-1, -1) \)
- C \((6, 4) \)
- D \((-10, -2) \)

9. **Challenge**

Explain why each of the following is not a net for the cube shown above.

- A \(\triangle ABC \)
- B \(\triangle DEF \)
- C \(\triangle GHI \)
- D \(\triangle JKL \)

10. Below is a net for a cube. In the space at the right, make a set of isometric drawings that describe the cube completely.

- Sample answer:

Reading Strategies

Use Graphic Aids

A composition of transformations is one transformation followed by another. The graphic aid shows four possible compositions. Use it as a guide.

1. Translate quadrilateral \(FGHU \) along vector \(W \).
2. Reflect it along line \(t \).

Reflect then translate

Reflect then translate

Reflect then translate

Reflect then translate

1. Rotate quadrilateral \(ABCD \) 90° about point \(D \).
2. Reflect it across line \(y \).

Draw the result of each composition of transformations.

1. Reflect quadrilateral \(ABCD \) across line \(x \) and then reflect again across line \(y \).